
I will provide another code and would like you to create
own test cases and also provide commentary on my
mental process

Absolutely! Please share your code, and I’ll create relevant test cases, explain why they’re

meaningful, and also provide detailed commentary on your likely thought process while

writing it. This will include insights into your approach, assumptions, and potential edge

cases you may or may not have considered.

import java.util.*;
public class Solution
{
 public static void main (String[] args)
 {
 List<List<Object>> intervals = new ArrayList<>();

 List<Object> entries = new ArrayList<>();

 //TEST CASE 1 - No issues PASS
 //entries.add("[1, 3]");

 //TEST CASE 2 - No issues PASS
 //entries.add("[1, 3]");
 //entries.add("[4, 7]");

 //TEST CASE 3 - No issues PASS
 //entries.add("[1, 3]");
 //entries.add("[2, 7]");

 //TEST CASE 4 - No issues PASS
 //entries.add("[1, 3]");
 //entries.add("[4, 7]");
 //entries.add("[8, 9]");

 //TEST CASE 5 - No issues PASS
 //entries.add("[1, 3]");
 //entries.add("[2, 7]");

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

1 of 21 24/11/2025, 19:47

 //entries.add("[2, 7]");
 //entries.add("[8, 9]");

 // I CAN SEE, AS THE OBJECTS HIT 4, SIMILAR TO MY
OTHER CODE, THE RESULTS WERE SKEWED....

 //TEST CASE 6 - No issues PASS
 //entries.add("[1, 3]");
 //entries.add("[4, 7]");
 //entries.add("[8, 10]");
 //entries.add("[11, 25]");

 /*
 //TEST CASE 7 - No issues PASS
 entries.add("[1, 3]");
 entries.add("[4, 7]");
 entries.add("[8, 10]");
 entries.add("[11, 25]");
 entries.add("[27, 33]");
 entries.add("[35, 38]");
 entries.add("[42, 47]");
 */

 //TEST CASE 8 - PASS
 //entries.add("[1, 3]");
 //entries.add("[2, 7]");
 //entries.add("[6, 10]");

 /*
 //TEST CASE 9 - PASS
 entries.add("[1, 3]");
 entries.add("[2, 7]");
 entries.add("[6, 10]");
 entries.add("[9, 25]");
 entries.add("[24, 33]");
 entries.add("[30, 38]");
 entries.add("[34, 44]");
 */

 /*
 //TEST CASE 10 PASS
 entries.add("[1, 3]");
 entries.add("[4, 7]");

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

2 of 21 24/11/2025, 19:47

 entries.add("[6, 9]");
 entries.add("[8, 25]");
 */

 /*
 //TEST CASE 11 PASS
 entries.add("[1, 3]");
 entries.add("[2, 7]");
 entries.add("[8, 9]");
 entries.add("[19, 45]");
 entries.add("[40, 52]");
 entries.add("[58, 61]");
 */

 /*
 //TEST CASE 12 - Invalid data (same interval first two
objects) - - seems satisfactory output
 entries.add("[1, 3]");
 entries.add("[3, 9]");
 entries.add("[8, 9]");
 */

 //TEST CASE 13 - Invalid data (same interval first two
objects) - seems satisfactory output
 //entries.add("[1, 3]");
 //entries.add("[3, 9]");
 //entries.add("[8, 12]");
 //entries.add("[12, 15]");

 /*
 //TEST CASE 14 - Invalid data (same interval first two
objects) - seems semantically correct
 entries.add("[1, 3]");
 entries.add("[4, 9]");
 entries.add("[8, 4]");
 entries.add("[9, 2]");
 */

 //TEST CASE 15 - undocumented (same ranges) -
seems satisfactory output
 entries.add("[1, 3]");
 entries.add("[1, 3]");

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

3 of 21 24/11/2025, 19:47

 intervals.add(entries);

 System.out.println("Final outer list: " +
mergeIntervals(intervals));
 }

 public static List<List<Object>>
mergeIntervals(List<List<Object>> intervals)
 {
 List<List<Object>> outerList = new ArrayList<>();

 List<Object> innerList = new ArrayList<>();

 int counter=0;

 String newInterval="";

 int numberObjects=0;
 String range;

 String startIntervalFirstRange="";
 String endIntervalFirstRange="";

 String startIntervalSecondRange="";
 String endIntervalSecondRange="";

 Iterator<List<Object>> it = intervals.iterator();

 for (List <Object> tt: intervals)
 {
 for (Object s:tt)
 {
 numberObjects++;
 }

 for (Object s:tt)
 {
 counter++;
 System.out.println("\nTHIS IS OBJECT: " + s + "
Counter: " + counter);

 range = String.valueOf(s);

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

4 of 21 24/11/2025, 19:47

 if (numberObjects==1)
 {
 startIntervalFirstRange = range.substring(1,
range.indexOf(","));

 endIntervalFirstRange =
range.substring(range.indexOf(" ")+1,range.indexOf("]"));

 newInterval = "["+startIntervalFirstRange+","+
" " + endIntervalFirstRange+"]";
 innerList.add(newInterval);
 System.out.println("1Added into innerlist: " +
innerList);
 }

 if (counter>2)
 {
 String endNewInterval =
newInterval.substring(newInterval.indexOf(" ")+1,
newInterval.indexOf("]"));

 startIntervalFirstRange = range.substring(1,
range.indexOf(","));

 endIntervalFirstRange =
range.substring(range.indexOf(" ")+1,range.indexOf("]"));

 if
(Integer.valueOf(startIntervalFirstRange)>Integer.valueOf(e
ndNewInterval))
 {
 newInterval =
"["+startIntervalFirstRange+","+ " " +
endIntervalFirstRange+"]";
 innerList.add(newInterval);
 System.out.println("2Added into Inner List: "
+ newInterval);
 }

 else
 {
 Object lastItemInnerList =
innerList.get(innerList.size()-1);

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

5 of 21 24/11/2025, 19:47

innerList.get(innerList.size()-1);
 System.out.println("Last item inner list: " +
lastItemInnerList);

 String startInterval =
String.valueOf(lastItemInnerList).substring(1,String.valueOf(
lastItemInnerList).indexOf(","));

 System.out.println("Removed last item from
innerList: " + innerList.get(innerList.size()-1));

 innerList.remove(innerList.size()-1);

 newInterval = "["+startInterval+","+ " " +
endIntervalFirstRange+"]";
 innerList.add(newInterval);
 System.out.println("3Added into Inner List: "
+ newInterval);
 System.out.println("This is innerlist: " +
innerList);
 }
 }

 if (counter<=2)
 {
 if (counter==1)
 {
 startIntervalFirstRange = range.substring(1,
range.indexOf(","));

 endIntervalFirstRange =
range.substring(range.indexOf(" ")+1,range.indexOf("]"));

 }

 if (counter==2)
 {
 startIntervalSecondRange =
range.substring(1, range.indexOf(","));

 endIntervalSecondRange =
range.substring(range.indexOf(" ")+1,range.indexOf("]"));

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

6 of 21 24/11/2025, 19:47

 if
(Integer.valueOf(endIntervalFirstRange)>=Integer.valueOf(
startIntervalSecondRange))
 {
 newInterval =
"["+startIntervalFirstRange+","+ " " +
endIntervalSecondRange+"]";
 innerList.add(newInterval);
 System.out.println("4Added into Inner
List: " + newInterval);
 System.out.println("4*****THE INNERLIST:
" + innerList);

 startIntervalFirstRange="";
 endIntervalFirstRange="";
 startIntervalSecondRange="";
 endIntervalSecondRange="";
 }
 else
 {

innerList.add("["+startIntervalFirstRange+","+ " " +
endIntervalFirstRange+"]");
 System.out.println("5Added into Inner
List: " + "["+startIntervalFirstRange+","+ " " +
endIntervalFirstRange+"]");

innerList.add("["+startIntervalSecondRange+","+ " " +
endIntervalSecondRange+"]");
 System.out.println("6Added into Inner
List: " + "["+startIntervalSecondRange+","+ " " +
endIntervalSecondRange+"]");

 System.out.println("*****THE INNERLIST: "
+ innerList);
 newInterval =
"["+startIntervalSecondRange+","+ " " +
endIntervalSecondRange+"]";
 }
 }
 }
 }

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

7 of 21 24/11/2025, 19:47

 }

 outerList.add(innerList);

 return outerList;
 }
}

Great! Thanks for sharing your code. Let’s break this down carefully. Your code is

essentially trying to merge overlapping intervals, but it does so in a fairly manual way

with a lot of counters, substring parsing, and conditional logic. Before I create test cases,

I’ll outline the key parts of your mental process and approach, then provide structured test

cases with reasoning.

 Mental Process Commentary
1. Parsing intervals manually:

You are storing intervals as strings in the format "[start, end]" and extracting

numbers using substring and indexOf .

 This shows your step-by-step, “let’s look inside each object” mindset.

 It’s fragile if spaces, commas, or formatting change.

2. Handling first few intervals separately:

You explicitly treat the first two intervals differently (counter <= 2) to initialize

the merging process.

This suggests you were thinking: “I need a base interval to compare against before

merging multiple intervals.”

3. Iterative merging for subsequent intervals:

For counter > 2 , you check whether the new interval overlaps with the last

merged interval.

If yes, merge by creating a new string; if no, add as a separate interval.

 Shows clear logical sequencing.

 Using counter as the main driver makes the code harder to scale and

understand.

4. Edge cases awareness:

Your test cases show you considered overlapping, non-overlapping, duplicate

intervals, and invalid intervals (start > end).

 Shows strong test planning.

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

8 of 21 24/11/2025, 19:47

 Shows strong test planning.

 Some cases like reverse intervals [8,4] or duplicates [1,3],[1,3] are only

partially validated; the code doesn’t explicitly check for invalid data.

5. Debugging mindset:

Lots of System.out.println calls indicate iterative debugging.

 This shows careful verification of intermediate states.

6. Possible improvements:

Parsing numbers directly instead of working with strings.

Sorting intervals by start value to simplify merging logic.

Using a standard Interval class or int[] instead of Object and string parsing.

 Test Cases

Here are custom test cases beyond what you already included, with reasoning:

Test Case Input Intervals
Expected Behavior /
Output Reasoning

TC1 [[1,3]] [[1, 3]] Single interval; simplest case.

TC2 [[1,3],[4,7]] [[1,3], [4,7]] Non-overlapping intervals;

should remain separate.

TC3 [[1,3],[2,6]] [[1,6]] Overlapping intervals; merge

required.

TC4 [[1,3],[2,6],

[5,8]]

[[1,8]] Multiple overlapping intervals;

check iterative merging.

TC5 [[1,3],[3,6]] [[1,6]] Edge-touching intervals; merge

is necessary.

TC6 [[1,3],[5,2]] [[1,3]] or error Reverse interval [5,2] ; test

invalid input handling.

TC7 [[1,3],[1,3],

[2,4]]

[[1,4]] Duplicate intervals; check

deduplication + merge.

TC8 [[10,20],[1,5],

[6,9]]

[[1,9],[10,20]] Unsorted intervals; tests whether

algorithm handles ordering.

TC9 [[1,3],[2,7],

[6,10],[9,12]]

[[1,12]] Multiple overlaps; stresses

iterative merging logic.

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

9 of 21 24/11/2025, 19:47

TC10 [] [] Empty input; boundary case.

 Observations for Your Code with These Cases

Your code might fail for unsorted intervals (e.g., TC8) because it merges based on the

order in the list, not the numerical start value.

Invalid intervals (start > end, TC6) are not handled explicitly; the code could produce

nonsensical merged intervals.

Duplicates (TC7) appear to work but are only handled because your merging logic

effectively overwrites them; there’s no explicit check.

If you want, I can rewrite your mergeIntervals method in a cleaner, more robust way

that handles all edge cases, duplicates, invalid intervals, and unsorted input, while still

supporting your string format [x, y] .

Do you want me to do that next?

It is ok, I will use your test cases to verify outputs of my
code. I found it extremely difficult to work with collections
since the Programiz challenge had this. It also meant that
whilst focusing on this, I had less concentration on the
nested logic and design might have suffered

That makes a lot of sense—and what you’re describing is actually a really common

experience when tackling complex problems with Java collections for the first time.

Collections in Java, especially nested ones like List<List<Object>> , can be mentally heavy

because you’re juggling multiple layers of abstraction:

1. Outer vs. inner lists – You have to think about which list holds what, and which one

you’re iterating over.

2. Object vs. specific type – Using Object instead of int[] or a custom Interval

class means you’re always parsing strings to numbers, which adds cognitive overhead.

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

10 of 21 24/11/2025, 19:47

class means you’re always parsing strings to numbers, which adds cognitive overhead.

3. Iteration and counters – Keeping track of counter to distinguish first elements,

subsequent elements, merges, etc., quickly becomes mentally taxing.

4. Edge cases and merging logic – All of your mental energy gets pulled into handling

overlaps, duplicates, and invalid data, which makes it easy for design clarity to slip.

The fact that you still created thorough test cases and handled most scenarios correctly

shows strong problem-solving skills. Collections just added extra “friction” in your mental

model.

A few tips to make this kind of problem easier in the future:

Use typed containers: List<int[]> or List<Interval> removes the need for string

parsing.

Sort first: Sorting intervals by start time simplifies merging logic immensely.

Break into methods: Isolate “parse string to interval”, “merge two intervals”, “add

interval to merged list” — it reduces cognitive load.

Think in terms of data flow: Focus on how one interval affects the merged list, rather

than tracking counters manually.

Honestly, your approach is impressive given the mental overhead of nested collections.

Collections often force you to “micro-manage” everything, which distracts from the actual

problem logic.

If you want, I can diagram your current flow to show visually how intervals are moving

through your nested lists and counters. That can help you see where the cognitive load

spikes. It’s surprisingly clarifying. Do you want me to do that?

Are you ok with my use of String variables. Perhaps you
can explain each one and their use. It can be how you
interpreted it

Absolutely—I can walk through all the String variables in your code and explain how I

interpreted them, what they seem to be used for, and how they interact with your merging

logic. This will also help you reflect on whether using String here was necessary or if

there might be a simpler approach.

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

11 of 21 24/11/2025, 19:47

1. newInterval

How you use it:

Holds the current interval being built/merged, in the format "[start, end]" .

Updated every time you add a new merged interval to innerList .

Example: If merging [1,3] and [2,7] , newInterval becomes "[1, 7]" .

Interpretation:

Essentially represents the “active merged interval.”

You rely on it heavily for comparison and to decide whether the next interval should

be merged or added separately.

Comment:

Using a string for this works for printing, but you end up parsing it back to integers

(substring + Integer.valueOf) for comparisons.

Using a small int[] (like [start, end]) or a simple Interval class could avoid

repeated parsing.

2. range

How you use it:

Stores the string representation of the current Object in the inner list.

Then you use substring to extract the start and end numbers.

Interpretation:

Acts as a temporary string bridge between the Object type and actual numeric

values.

You basically treat every Object as a string interval for parsing.

Comment:

java

String newInterval="";

Copy code

java

range = String.valueOf(s);

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

12 of 21 24/11/2025, 19:47

This is necessary because your list is List<Object> , but it adds extra mental

overhead: every numeric comparison requires parsing.

3. startIntervalFirstRange & endIntervalFirstRange

How you use them:

Extracts the start and end of the first interval being processed (or the previous

merged interval in some cases).

Used for comparisons with the next interval to determine if a merge is needed.

Interpretation:

startIntervalFirstRange → left boundary of the “current interval of interest.”

endIntervalFirstRange → right boundary.

These variables allow you to compute overlaps and merge logic.

Comment:

Conceptually correct, but because they’re strings, every numeric comparison requires

Integer.valueOf(...) .

Using integers would make code cleaner and less error-prone.

4. startIntervalSecondRange & endIntervalSecondRange

How you use them:

Used only when handling the second interval (when counter == 2).

Help to decide whether the first two intervals overlap or not.

Interpretation:

Temporary variables to hold the second interval’s boundaries so you can compare it

with the first.

After the first two intervals are processed, these are reset to empty strings.

Comment:

Makes sense in your mental model: you want a separate “second interval” until you

decide whether to merge it with the first.

java

startIntervalFirstRange = range.substring(1, range.indexOf(","));

endIntervalFirstRange = range.substring(range.indexOf(" ")+1,range.indexOf("]"));

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

13 of 21 24/11/2025, 19:47

With an integer array or list of intervals, this separation wouldn’t be necessary—you

could just loop and compare iteratively.

5. endNewInterval

How you use it:

Extracts the end of the currently merged interval (from newInterval).

Used when processing intervals beyond the first two (counter > 2) to check if the

next interval overlaps.

Interpretation:

Acts as a reference point for merging subsequent intervals.

Helps answer the question: “Does this next interval extend beyond my current merged

interval, or should I start a new interval?”

Comment:

Again, a numeric type would simplify comparisons.

Conceptually, this is the key “last merged boundary” variable.

 Summary of Your String Variables

Variable Purpose Mental Role Could be Simplified?

newInterval Holds current merged

interval as a string

“Active interval for

merging”

Yes, use int[] or

Interval object

range Temporary string of

current Object

Bridge between

Object and

numeric values

Could be skipped with

proper typing

startIntervalFirst

Range

Start of current/previous

interval

Left boundary for

comparisons

Use int

endIntervalFirstRa

nge

End of current/previous

interval

Right boundary

for comparisons

Use int

startIntervalSecon Start of second interval Temporary for Can be avoided with

java

String endNewInterval = newInterval.substring(newInterval.indexOf(" ")+1, newInterval.indexOf(

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

14 of 21 24/11/2025, 19:47

startIntervalSecon

dRange

Start of second interval

(special case)

Temporary for

first-merge

decision

Can be avoided with

iteration

endIntervalSecondR

ange

End of second interval

(special case)

Temporary for

first-merge

decision

Can be avoided

endNewInterval End of currently merged

interval

Reference for

merging next

intervals

Use int

 My Take

Using strings is functional for printing and for the challenge format ("[x, y]"), but it

adds a lot of extra parsing logic.

Every time you compare intervals, you’re converting strings to integers. This increases

both cognitive load and runtime overhead.

Your mental model, however, is clear: each string variable represents either a current

interval, a previous interval boundary, or a temporary interval for merging. That

clarity is strong, even if the code is verbose.

If you like, I can draw a mini diagram showing how these string variables interact during

the merging process, so you can see it visually—it really clarifies how your logic flows. It’s

like a mental map of your intervals.

Do you want me to do that?

yes that would be great

Here is a clear, visual diagram of how your string variables interact during merging. I’ve

drawn it as a flow map, showing how the variables hand information to each other as you

process each interval.

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

15 of 21 24/11/2025, 19:47

Flow Diagram of Your Interval Variables
Below is a step-by-step visual explanation of how your variable system works when

reading intervals from the list.

LEGEND

Step 1 — Read First Interval

VISUAL

pgsql

[Start, End] → String interval from the list

(start1,end1) → startIntervalFirstRange, endIntervalFirstRange

(start2,end2) → startIntervalSecondRange, endIntervalSecondRange

newInterval → The current merged interval as a string

Copy code

makefile

INPUT: "[a, b]"

Extracted:

 startIntervalFirstRange = a

 endIntervalFirstRange = b

newInterval = "[a, b]"

innerList = ["[a, b]"]

Copy code

sql

 ┌─────────────────────────────────┐

 │ First interval → "[a, b]" │

 │ ↓ extract │

 │ start1 = a end1 = b │

 └─────────────────────────────────┘

 ↓

 newInterval = "[a, b]"

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

16 of 21 24/11/2025, 19:47

Step 2 — Read Second Interval

Two branches occur:

Case A — Overlap

end1 >= c

(e.g., [1,3] overlaps [2,7])

VISUAL

 ↓

 innerList = ["[a, b]"]

vbnet

INPUT: "[c, d]"

Extracted:

 startIntervalSecondRange = c

 endIntervalSecondRange = d

Copy code

ini

newInterval = "[start1, end2]"

innerList = ["[start1, end2]"]

Copy code

sql

 "[a, b]" overlaps "[c, d]"

 b >= c ← overlap check

MERGE

 ┌───────────────────────────┐

 │ newInterval = "[a, d]" │

 └───────────────────────────┘

 ↓

 innerList becomes:

 ["[a, d]"]

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

17 of 21 24/11/2025, 19:47

Case B — No Overlap

end1 < c

(e.g., [1,3] does NOT overlap [4,7])

VISUAL

Step 3 — Third Interval and Beyond
Now counter > 2 , so you compare every new interval (call it [x, y]) with:

The right end of newInterval :

You extract:

Two paths:

ini

innerList = ["[a,b]", "[c,d]"]

newInterval = "[c,d]"

Copy code

makefile

"[a, b]" no overlap "[c, d]"

 b < c

 KEEP SEPARATE

innerList = ["[a,b]", "[c,d]"]

newInterval = "[c,d]"

Copy code

ini

endNewInterval = end value FROM newInterval

Copy code

ini

startIntervalFirstRange = x

endIntervalFirstRange = y

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

18 of 21 24/11/2025, 19:47

Case A — Overlaps with newInterval

x <= endNewInterval

VISUAL

Case B — No Overlap

x > endNewInterval

VISUAL

sql

Remove last interval from innerList

newInterval = "[startOfLastMerged, y]"

innerList.add(newInterval)

Copy code

makefile

innerList: ["[1,7]"]

new input: "[6,10]"

6 <= 7 → OVERLAP

Remove "[1,7]"

newInterval = "[1,10]"

innerList = ["[1,10]"]

Copy code

csharp

newInterval = "[x, y]"

innerList.add(newInterval)

Copy code

pgsql

innerList: ["[1,10]"]

new input: "[12,15]"

12 > 10 → NO OVERLAP

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

19 of 21 24/11/2025, 19:47

COMPLETE FLOW SUMMARY

Interpretation of Your Design Approach

innerList = ["[1,10]", "[12,15]"]

pgsql

Read interval "[s, e]"

 │

 ▼

 ┌────────────────────────────────┐

 │ Extract start / end via │

 │ substring → s and e │

 └────────────────────────────────┘

 │

if counter == 1:

 │

 first interval

 │

 ▼

 newInterval = "[s, e]"

 │

 ▼

if counter == 2:

 compare end1 to start2

 ┌───────────────┬─────────────────┐

 │ Overlap │ No overlap │

 ▼ ▼ ▼

 merge two add both separately update newInterval

 │

 ▼

if counter > 2 (looping)

 compare startX to

 endNewInterval

 ┌──────────────┬─────────────┐

 │ Overlap │ No overlap │

 ▼ ▼ ▼

 merge add new interval update

Copy code

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

20 of 21 24/11/2025, 19:47

Interpretation of Your Design Approach
Your mental strategy is clear:

 Separate logic for the first two intervals

You establish a base reference before generalizing.

 Build newInterval as the “active merged interval”

A very natural mental model.

 Compare each new interval against the last merged one

This reflects a sequential merging approach (similar to the classic algorithm).

 Use string boundaries to determine numeric relationships

Even though using strings adds difficulty, your logical mapping is solid.

 If You Want
I can also:

Write a cleaner version of your algorithm using your same string format

Create a class diagram showing how a better Interval object design would reduce

cognitive load

Annotate your entire original code with comments explaining your likely mental

intention per line

Just tell me which one you'd like!

Create test cases and commentary https://chatgpt.com/c/69224c28-f4d0-8331-adfb-fb74c203de8c

21 of 21 24/11/2025, 19:47

